84		Po200	Po201	Po202	Po203	Po204	Po205	Po206	Po207	Po208	Po209	Po210	Po211	Po212	Po213	Po214	Po215	Po216	Po217	Po218	Po219
		10.9 M	15.3 M	44.7 M	36.7 M	3.53 H	1.66 H	BBD	SEDH	2.898 Y	102 Y	138.376 D	D.516 S	0299 US	365 US	164.3 US	1.781 MS	0.1455	1.47 S	3.10 M	-2 M
83	3	B i199	Bi200	Bi201	Bi202	Bi203	Bi204	Bi205	Bi206	Bi207	Bi208	Bi209	Bi210	Bi211	Bi212	Bi213	Bi214	Bi215	B i216	Bi217	19
		27 M	364 M	10B M	1.72 H	11.76H	11.22 H	15.31 D	6243D	31.55 Y	368000 Y	100	5DI3D	2.14 M	60.55 M	45.59 M	199M	76M	2.17 34	97 S	1
82		Pb198	Pb199	Pb200	Pb201	Pb202	Pb203	Pb204	Pb205	Pb206	Pb207	Pb208	Pb209	Pb210	Pb211	Pb212	Pb213	Pb214	16.7		
1	1	2.40 H	SC M	21.5H	9.33 H	52.500 Y	51 B73 H	1.4	1 530000 Y	24.1	22.1	\$2.4	3253H	22.3 Y	36.1 M	10.64 H	102 M	268 M	1.1.1		

Radiochemistry: from half-lives to saving lives

Student Handbook

Website: https://moodle.cinch-project.eu/course/view.php?id=85

This Section is to be completed BEFORE CLASS

Isotopes

Isotopes are atoms with the same number of ______ but a different number of ______.

Isotopes of an element share the same chemical ______.

Radioactive isotopes (radionuclides)

A radioisotope is an ______ that has ______ nuclei.

This instability causes them to undergo changes in the nucleus in order to increase their stability, this process is known as ______. In doing so they emit radiation in the form of alpha, beta and gamma (α , β or γ) or a combination of them.

Q. Calculate the number of protons, neutrons and electrons for the following isotopes of potassium.

19 K	³⁹ K	⁴⁰ K	⁴¹ K
Protons			
Neutrons			
Electrons			

Medical radioisotopes

Yttrium-90 (⁹⁰Y) is an important radioisotope that can be used to treat ______.

⁹⁰Y is formed when strontium-90 (⁹⁰Sr) undergoes ______ decay, which in turn undergoes β^- decay to form stable zirconium-90 (⁹⁰Zr).

${}^{90}_{38}Sr \xrightarrow{t_{1/2}=29 \text{ years}} \rightarrow$	
$t_{1/2} = 64 hours$	

The short ______ of ⁹⁰Y means that it can be implanted in the cancer and deliver a high dose of radiation in a relatively short time period. The microspheres also block the blood vessels surrounding the cancer, starving the cancer of its ______ – thereby killing it.

Q. Why does ⁹⁰Sr accumulate in bones? (Hint: what other ions have similar properties to Sr²⁺?)

Column Chromatograp	ny 💭 🖿		
Chromatography is a te	chnique used to	and	components in
a mixture.			
Q. In gas chromatograp	hy, the mobile phase is an inert g	as (e.g. helium). What is the r	mobile phase in column
chromatography?			
Q. What is the stationar	y phase?		
Separation by column c phase and	hromatography depends on the b in the stationary phase.	alance between	in the moving

Retention Factor (k')

Complete the table below with the word "stationary" or "mobile" to describe the movement of the radionuclide in a given nitric acid concentration. One answer has already been provided.

Solvent	Sr-90	Y-90
3 M HNO ₃		
0.0001 M HNO ₃		mobile

Q. Based on the information above, how could you separate ⁹⁰Sr from ⁹⁰Y?

Experimental Procedure

Use your understanding of the theory to complete the experimental procedure.

Prepare the column

- 1. Open valve 3 (V3) to start the experiment.
- 2. Set the solvent flow rate to ______.
- 3. Select ______ solvent.
- 4. Click on "start solvent pump" to begin pumping the solvent onto the column. Use the camera feed to check that the pump is rotating and droplets of solvent are landing on the slide.
- 5. Allow the solvent to run for 5 minutes to ______ the entire column.
- 6. Whilst waiting, set up your measurement parameters by going to the measurement tab. Set the measurement time to 3600 seconds (the duration of your experiment, 1 hour) and the counting interval to 10 seconds (this is how often the Geiger counter will record the activity).
- 7. Click on "start measurement".
- 8. Make a note of the _____.

Separation of ⁹⁰Y from ⁹⁰Sr

- 9. After 5 minutes, stop the solvent pump.
- 10. Click on ______. The syringe will administer the ⁹⁰Sr/⁹⁰Y solution onto the top of the column.
- 11. Start the solvent pump. Use the video to check that the solvent is flowing and that the measurement table is being filled.
- 12. Allow the first peak in the chromatogram to build up and return to the background count rate.
- 13. Select ______ solvent.
- 14. Allow the second peak to build up and return to the background count rate.
- 15. The experiment is now complete. Email the data and log book to your school email address.
- 16. Click on 'logout and exit'.

Missing words/phrases

background count rate"inject activity!"0.0001 M HNO31 ml/minute3 M HNO3'wet' the entire column

This Section is to be completed IN CLASS

What is Radiation? Radiation is energy travelling as ______ or _____. Q. What are the three main types of ionising radiation? ______.

Half-life (t½)

The quantity of material remaining after a given time, can be calculated using the equations below.

$\lambda = \frac{\ln 2}{t_{1}}$	λ = decay constant (s ⁻¹) N ₀ = initial quantity
$\frac{1}{2}$	N _t = remaining quantity after a time, t
	t = time interval (s)
$N_t = N_0 e^{-\lambda t}$	$t_{\mathcal{H}}$ = half-life (s)

Q. Assuming a starting mass of 1.00 g, calculate the amount of 90 Y remaining after 5 days.

Beta minus decay (β ⁻)

_____·

β^{-} decay occurs when an isotope is	because it has too many	
To reach a more stable state, one of the	decays into a	and an

Q. Calculate how many protons, neutrons and electrons there are in ⁹⁰Sr, ⁹⁰Y and ⁹⁰Zr.

	90Sr	9 ⁰ Y	⁹⁰ Zr
Protons	38		
Neutrons	52		
Electrons	38		

Questions

- 1. In your experiment, which component is the mobile phase and which is the stationary phase?
- 2. Why is it important to wet the column at the start of the experiment?
- 3. Draw and label a sketch of your results.

- 4. Using a noble gas core [Kr], complete the electron arrangement for the following: Sr
 - Y
 - Sr²⁺

- 5. Go to the MolView website (<u>http://molview.org</u>). Use the left-hand panel to draw the crown ether used in this experiment. The chemical formula is C₂₈H₅₂O₆. Click on 2D to 3D to convert your diagram into a 3D shape. Use the right-hand panel to estimate the diameter of the resin's cavity (using the top panel, find "distance", then click between the atoms).
- 6. The ionic radius of Sr²⁺ and Y³⁺ is 1.40 Å and 1.16 Å respectively. Why do you think Y³⁺ shows very little affinity towards the crown ether resin?

- 7. What order did you add the acid solvent to the column and why?
- 8. What is the problem with storing ⁹⁰Y for too long before using it?
- 9. What hazards are associated with this experiment?
- 10. If you were carrying out this experiment in person, what precautions would you take?
- 11. How would you improve the design of the experiment?
- 12. Research another radioisotope and give an example of its application.